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In recent years, there has been renewed interest in wave patterns generated by
bodies propagating in shallow water. The original motivation comes from the recent
experiments of Ertekin, Webster & Wehausen (1984) who observed that ships moving in
channels at nearly critical speeds (Froude number based on depth about equal to
one) continuously excite nonlinear waves which form and propagate ahead of the ship.
In spite of the fact that the channel, where the experiments were conducted, was
wide compared with the dimensions of the ship model, the observed nonlinear waves
were, to a very good approximation, straight-crested solitons.

Using a two-dimensional travelling pressure distribution as an excitation, Wu
& Wu (1982) solved numerically the Boussinesq equations and found solitons propa-
gating ahead of the source. In independent work, Akylas (1984) demonstrated that,
near critical conditions, the Boussinesq equations could be reduced to a forced
Korteweg-deVries (KdV) equation; numerical solutions of this equation again show
the appearance of solitonms.

The three-dimensional aspects of the problem near critical conditions were
first examined by Mei (1985) who showed that, for channels of finite but not very
large width, the generated wave disturbance is again governed by a forced KdV equa-
tion. Also, Ertekin, Webster & Wehausen (private communication) solved numerically
the forced three-dimensional Boussinesq equations in channels of finite, but not
arbitrary, width and found two-dimensional solitons in front of the source, in
agreement with their experiments.

This talk will focus attention on the wave disturbance generated by bodies
moving in shallow channels of arbitrary (perhaps infinite) width, so that three-
dimensional effects in the nonlinear waves found ahead of the source are not negli-
gible as in the previous works cited above. It is shown that, near critical condi-
tions, the generated wave disturbance is governed by a forced Kadomtsev- _
Petviashvilli (KP) equation, a natural generalization of the KdV equation found by
Akylas (1984) in the two-dimensional problem. Of course, in the special case that
the channel is not very wide, the three-dimensional effects drop out and the KdV is
recovered, in accordance with Mei (1985).

The main question to be addressed is whether unsteady three-dimensional non-
linear waves appear in front of the moving body or a nonlinear steady state is
reached. To answer this question, the predictions of the linearized theory, which
is valid at small times, is examined first in an unbounded domain. It is found that
the linearized response reaches a steady state which is oscillatory only behind the
source. However, in front of the body, there is a finite disturbance, which varies
like the inverse distance from the source and thus involves the displacement of an
infinite amount of water. Also, a study of the transient linearized response re-
veals that, for large times, the linear dispersive effects decay faster than the
nonlinear effects so that the nonlinear effects cannot be neglected in the far
field. Thus, one is led to suspect that, as in the two-dimensional problem, non-
linear effects become important and give rise to three-dimensional unsteady nonlin-
ear waves ahead of the body.
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The nonlinear unsteady response 1s investigated by solving numerically the
forced KP equation, using the predictions of the linear theory as initial condi-
tions. The results of this numerical investigation will be presented and the effect
of the channel width on the nature of the nonlinear wave disturbances found ahead of
the source will be demonstrated. The transition from straight-crested solitons to
three-dimensional nonlinear unsteady disturbances as the channel width is increased,
will be discussed. Furthermore, the effect of reversing the sign of dispersion in
the KP equation (which occurs at very small depth) on the soliton stability will be
considered.
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Discussion

I would like to show three transparencies that complement
Akylas' talk. All three show the waves generated by a
rectangular pressure patch moving down a channel following an
impulsive start. The first shows the waves for depth Froude
numbers 0.9, 1.0 and 1.1 after a considerable time has
elapsed. The generation of solitons ahead of the pressure
patch is evident. Following the patch is the expected doubly
corrugated surface. The next transparency shows for Froude
number 1.2 how the solitons develop with passage of time. The
last transparency is also for Froude number 1.2 but for
pressure amplitude one third as high as in the last one. 1In
this case, one sees that no solitons are generated. As a
result of some two dimensional numerical experimentation it
appears that for each Froude number > 1 there is a critical
pressure amplitude beneath which no solitons are generated. I
should like to add that the development of the "half-soliton"
to a full one as shown in Akylas' computations resembles
remarkably what we have observed in analogous situations.

Both T. Wu and I have computed and observed solitons for
Froude numbers less than 0.4 (considered deep water).

A theory must be able to predict these, and both the
Boussinesq and Green-Naghdi equations do. This appears to be
a shortcoming of Akylas' approach.

I think the answer is that this goes back to what an
asymptotic expansion is. The question is: How small is
epsilon? However the perturbation theory usually extends far
beyond its expected range of validity. Thus, I would not be
surprised if the K-P equation predicts the appearance of
solitons at such low Froude numbers. We plan to do such
calculations in the near future.

I congratulate you on making some very interesting
observations. There are now several models for this problem,
so perhaps we should hold a small workshop in this area. Is it
true that the K-P equation has a bias in favor of oblique
solitons at small angles to the transverse direction? Based on
limited computations, we have obtained results very similar to
Akylas'. Regarding your comments about the group velocity; if
we consider a single soliton where the phase velocity equals
the square root of g(h + a), adding higher terms and computing
the group velocity by differentiating would be a good way to
find if we are on the right track for comparing the various
theories. Finally, it is a "blessing of Mother Nature" that
these theories have such a wide range of wvalidity.

With the K-P forcing equation, can you use a bottom bump as
well as a presure distribution to generate solitons?
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Akylas:

Mei:

Akylas:

Yes, we can.

First, your abstract mentions computations for an elongated
pressure distribution, but you have not presented these.
Second, Wehausen and I disagree, within some parameter range,
whether the waves are two-dimensional behind as well as ahead
of the pressure disturbance. Third, you did not do any
computations on cases similar to the one I studied. Did you
say that you think the methods would agree?

We have performed preliminary computations with both the
linearized version and the nonlinear K-P in a channel of
finite width. The nonlinear response shows the appearance of
solitons. Unfortunately, I am not able to show the graphs
today due to certain problems that we had with the laser
printer. In the limit that the dimensionless channel width

d << 1, where your theory applies, the response is two-
dimensional. But for d = 0(1) this is not so behind the
source.




